Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 159(10)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37681700

ABSTRACT

A gold surface is functionalized by chemisorption of the enantiopure N,N'-bis-[2,2';5',2″]tert-thiophene-5-yl methylcyclohexane-1,2-diamine (2T3N), a chiral oligothiophene derivative, via overnight incubation in a 2T3N ethanol solution. The Au|2T3N interface is characterized by x-ray photoelectron circular dichroism and comparing x-ray photoemission spectroscopy and electro-desorption results. Charge transmission at the Au|2T3N| solution interface is characterized by recording the cyclic voltammetry of the Fe(III)/Fe(II) reversible redox couple, finding a charge transfer rate constant, k°, variation from 1 × 10-1 to 3.3 × 10-2 cm s-1, when comparing the bare Au and the Au|2T3N interfaces, respectively. The "anomalous" high value of k° found for the chiral Au|2T3N interface can be rationalized on the basis of the chiral-induced spin selectivity effect, as further proved by magnetic-conductive atomic force microscopy measurements at room temperature. A spin polarization of about 30% is found.

2.
Nat Commun ; 13(1): 2472, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35513364

ABSTRACT

Spin-momentum locking in topological insulators and materials with Rashba-type interactions is an extremely attractive feature for novel spintronic devices and is therefore under intense investigation. Significant efforts are underway to identify new material systems with spin-momentum locking, but also to create heterostructures with new spintronic functionalities. In the present study we address both subjects and investigate a van der Waals-type heterostructure consisting of the topological insulator Bi2Se3 and a single Se-Ta-Se triple-layer (TL) of H-type TaSe2 grown by a method which exploits an interface reaction between the adsorbed metal and selenium. We then show, using surface x-ray diffraction, that the symmetry of the TaSe2-like TL is reduced from D3h to C3v resulting from a vertical atomic shift of the tantalum atom. Spin- and momentum-resolved photoemission indicates that, owing to the symmetry lowering, the states at the Fermi surface acquire an in-plane spin component forming a surface contour with a helical Rashba-like spin texture, which is coupled to the Dirac cone of the substrate. Our approach provides a route to realize chiral two-dimensional electron systems via interface engineering in van der Waals epitaxy that do not exist in the corresponding bulk materials.

3.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328455

ABSTRACT

In 2019, the new coronavirus disease (COVID-19), related to the severe acute respiratory syndrome coronavirus (SARS-CoV-2), started spreading around the word, giving rise to the world pandemic we are still facing. Since then, many strategies for the prevention and control of COVID-19 have been studied and implemented. In addition to pharmacological treatments and vaccines, it is mandatory to ensure the cleaning and disinfection of the skin and inanimate surfaces, especially in those contexts where the contagion could spread quickly, such as hospitals and clinical laboratories, schools, transport, and public places in general. Here, we report the efficacy of ZnO nanoparticles (ZnONPs) against SARS-CoV-2. NPs were produced using an ecofriendly method and fully characterized; their antiviral activity was tested in vitro against SARS-CoV-2, showing a decrease in viral load between 70% and 90%, as a function of the material's composition. Application of these nano-antimicrobials as coatings for commonly touched surfaces is envisaged.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/prevention & control , Nanostructures/chemistry , SARS-CoV-2/drug effects , Zinc Oxide/pharmacology , Antiviral Agents/chemistry , COVID-19/chemically induced , COVID-19/epidemiology , Colorimetry , Humans , Microbial Sensitivity Tests/methods , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Pandemics/prevention & control , Photoelectron Spectroscopy , SARS-CoV-2/physiology , Spectroscopy, Fourier Transform Infrared , Treatment Outcome , Viral Load/drug effects , X-Ray Diffraction , Zinc Oxide/chemistry
4.
J Phys Condens Matter ; 33(42)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34298526

ABSTRACT

The continuing increase in the brilliance of synchrotron radiation beamlines allows for many new and exciting experiments that were impossible before the present generation of synchrotron radiation sources came on line. However, the exposure to such intense beams also tests the limits of what samples can endure. Whilst the effects of radiation induced damage in a static experiment often can easily be recognized by changes in the diffraction or spectroscopy curves, the influence of radiation on chemical or physical processes, where one expects curves to change, is less often recognized and can be misinterpreted as a 'real' result instead of as a 'radiation influenced result'. This is especially a concern in time-resolved materials science experiments using techniques as powder diffraction, small angle scattering and x-ray absorption spectroscopy. Here, the effects of radiation (5-50 keV) on some time-resolved processes in different types of materials and in different physical states are discussed. We show that such effects are not limited to soft matter and biology but rather can be found across the whole spectrum of materials research, over a large range of radiation doses and is not limited to very high brilliance beamlines.

5.
Angew Chem Int Ed Engl ; 59(6): 2323-2327, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31765512

ABSTRACT

Organothiol monolayers on metal substrates (Au, Ag, Cu) and their use in a wide variety of applications have been extensively studied. Here, the growth of layers of organothiols directly onto muscovite mica is demonstrated using a simple procedure. Atomic force microscopy, surface X-ray diffraction, and vibrational sum-frequency generation IR spectroscopy studies revealed that organothiols with various functional endgroups could be self-assembled into (water) stable and adaptable ultra-flat organothiol monolayers over homogenous areas as large as 1 cm2 . The strength of the mica-organothiol interactions could be tuned by exchanging the potassium surface ions for copper ions. Several of these organothiol monolayers were subsequently used as a template for calcite growth.

6.
Nano Lett ; 19(6): 3634-3640, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31095394

ABSTRACT

X-ray diffraction is measured on individual bilayer and multilayer graphene single-crystals and combined with electrochemically induced lithium intercalation. In-plane Bragg peaks are observed by grazing incidence diffraction. Focusing the incident beam down to an area of about 10 µm × 10 µm, individual flakes are probed by specular X-ray reflectivity. By deploying a recursive Parratt algorithm to model the experimental data, we gain access to characteristic crystallographic parameters of the samples. Notably, it is possible to directly extract the bi/multilayer graphene c-axis lattice parameter. The latter is found to increase upon lithiation, which we control using an on-chip peripheral electrochemical cell layout. These experiments demonstrate the feasibility of in situ X-ray diffraction on individual, micron-sized single crystallites of few- and bilayer two-dimensional materials.


Subject(s)
Graphite/chemistry , Lithium/chemistry , Nanostructures/chemistry , Algorithms , Nanostructures/ultrastructure , X-Ray Diffraction , X-Rays
7.
Langmuir ; 34(14): 4241-4248, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29565136

ABSTRACT

The structure of the solid-liquid interface formed by muscovite mica in contact with two divalent ionic solutions (SrCl2 and BaCl2) is determined using in situ surface X-ray diffraction using both specular and non-specular crystal truncation rods. The 0.5 monolayer of monovalent potassium present at the surface after cleavage is replaced by approximately 0.25 monolayer of divalent ions, closely corresponding to ideal charge compensation within the Stern layer in both cases. The adsorption site of the divalent ions is determined to be in the surface ditrigonal cavities with minor out-of-plane relaxations that are consistent with their ionic radii. The divalent ions are adsorbed in a partly hydrated state (partial solvation sphere). The liquid ordering induced by the presence of the highly ordered crystalline mica is limited to the first 8-10 Å from the topmost crystalline surface layer. These results partly agree with previous studies in terms of interface composition, but there are significant differences regarding the structural details of these interfaces.

8.
RSC Adv ; 8(34): 18980-18991, 2018 May 22.
Article in English | MEDLINE | ID: mdl-35539633

ABSTRACT

Self-ordered porous anodic alumina (PAA) films are studied extensively due to a large number of possible applications in nanotechnology and low cost of production. Whereas empirical relationships between growth conditions and produced oxides have been established, fundamental aspects regarding pore formation and self-organization are still under debate. We present in situ structural studies of PAA films using grazing-incidence transmission small-angle X-ray scattering. We have considered the two most used recipes where the pores self-organize: 0.3 M H2SO4 at 25 V and 0.3 M C2H2O4 at 40 V. During anodization we have followed the evolution of the structural parameters: average interpore distance, length of ordered pores domains, and thickness of the porous oxide layer. Compared to the extensively used ex situ investigations, our approach gives an unprecedented temporal accuracy in determination of the parameters. By using of Al(100), Al(110) and Al(111) surfaces, the influence of surface orientation on the structural evolution was studied, and no significant differences in the interpore distance and domain length could be observed. However, the rate of oxide growth in 0.3 M C2H2O4 at 40 V was significantly influenced by the surface orientation, where the slowest growth occurs for Al(111). In 0.3 M H2SO4 at 25 V, the growth rates were higher, but the influence of surface orientation was not obvious. The structural evolution was also studied on pre-patterned aluminum surfaces. These studies show that although the initial structures of the oxides are governed by pre-patterning geometry, the final structures are dictated by the anodization conditions.

9.
Nanoscale ; 10(1): 87-92, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210438

ABSTRACT

Understanding the physical properties of cholesterol-phospholipid systems is essential to gain a better knowledge of the function of each membrane constituent. We present a novel, simple and user-friendly setup that allows for the straightforward grazing incidence X-ray diffraction characterization of hydrated individual supported lipid bilayers. This configuration minimizes the scattering from the liquid and allows the detection of the extremely weak diffracted signal of the membrane, enabling the differentiation of the coexisting domains in DPPC:cholesterol single bilayers.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , X-Ray Diffraction
10.
Ultramicroscopy ; 182: 233-242, 2017 11.
Article in English | MEDLINE | ID: mdl-28734230

ABSTRACT

A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar.

11.
Sci Rep ; 7(1): 1615, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487534

ABSTRACT

Electrochemical Atomic Layer Deposition (E-ALD) technique has demonstrated to be a suitable process for growing compound semiconductors, by alternating the under-potential deposition (UPD) of the metallic element with the UPD of the non-metallic element. The cycle can be repeated several times to build up films with sub-micrometric thickness. We show that it is possible to grow, by E-ALD, Cu2S ultra-thin films on Ag(111) with high structural quality. They show a well ordered layered crystal structure made on alternating pseudohexagonal layers in lower coordination. As reported in literature for minerals in the Cu-S compositional field, these are based on CuS3 triangular groups, with layers occupied by highly mobile Cu ions. This structural model is closely related to the one of the low chalcocite. The domain size of such films is more than 1000 Å in lateral size and extends with a high crystallinity in the vertical growth direction up to more than 10 nm. E-ALD process results in the growth of highly ordered and almost unstrained ultra-thin films. This growth can lead to the design of semiconductors with optimal transport proprieties by an appropriate doping of the intra metallic layer. The present study enables E-ALD as an efficient synthetic route for the growth of semiconducting heterostructures with tailored properties.

12.
J Am Chem Soc ; 139(12): 4532-4539, 2017 03 29.
Article in English | MEDLINE | ID: mdl-28252295

ABSTRACT

The surface restructuring of Pt(111) electrodes upon electrochemical oxidation/reduction in 0.1 M HClO4 was studied by in situ grazing-incidence small-angle X-ray scattering and complementary scanning tunneling microscopy measurements. These methods allow quantitative determination of the formation and structural evolution of nanoscale Pt islands during potential cycles into the oxidation region. A characteristic ripening behavior is observed, where these islands become more prominent and homogeneous in size with increasing number of cycles. Their characteristic lateral dimensions primarily depend on the upper potential limit of the cycle and only slightly increase with cycle number. The structural evolution of the Pt surface morphology strongly resembles that found in studies of Pt(111) homoepitaxial growth and ion erosion in ultrahigh vacuum. It can be fully explained by a microscopic model based on the known surface dynamic behavior under vacuum conditions, indicating that the same dynamics also describe the structural evolution of Pt in the electrochemical environment.

13.
Langmuir ; 32(49): 12955-12965, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27951689

ABSTRACT

The solid-liquid interface formed by single terminated muscovite mica in contact with two different ionic solutions is analyzed using surface X-ray diffraction. Specular and nonspecular crystal truncation rods of freshly cleaved mica immersed in CsCl or RbBr aqueous solution were measured. The half monolayer of the surface potassium ions present after the cleavage is completely replaced by the positive ions (Cs+ or Rb+) from the solution. These ions are located in the ditrigonal surface cavities with small outward relaxations with respect to the bulk potassium position. We find evidence for the presence of a partly ordered hydration shell around the surface Cs+ or Rb+ ions and partly ordered negative ions in the solution. The lateral liquid ordering induced by the crystalline surface vanishes at distances larger than 5 Å from the surface.

14.
Rev Sci Instrum ; 87(11): 113705, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910601

ABSTRACT

We have developed a new instrument combining a scanning probe microscope (SPM) and an X-ray scattering platform for ambient-pressure catalysis studies. The two instruments are integrated with a flow reactor and an ultra-high vacuum system that can be mounted easily on the diffractometer at a synchrotron end station. This makes it possible to perform SPM and X-ray scattering experiments in the same instrument under identical conditions that are relevant for catalysis.

15.
Proc Natl Acad Sci U S A ; 113(34): 9521-6, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27503887

ABSTRACT

In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.


Subject(s)
Lipid Bilayers/chemistry , Proteolipids/chemistry , Spectrometry, X-Ray Emission/methods , Anthraquinones/chemistry , Glycosides/chemistry , Humans , Phosphatidylcholines/chemistry , Serum Albumin, Human/chemistry , Solutions , Spectrometry, X-Ray Emission/instrumentation
16.
Chem Mater ; 28(11): 3727-3733, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27346923

ABSTRACT

We employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.5 mol % yttria-stabilized zirconia (YSZ) single crystal electrolyte below a La0.6Sr0.4CoO3-δ (LSC) electrode. We observe yttrium segregation toward the YSZ/LSC electrolyte/electrode interface under reducing conditions. Under oxidizing conditions, the interface becomes Y depleted. The yttrium segregation is corroborated by an enhanced outward relaxation of the YSZ interfacial metal ion layer. At the same time, an increase in point defect concentration in the electrolyte at the interface was observed, as evidenced by reduced YSZ crystallographic site occupancies for the cations as well as the oxygen ions. Such changes in composition are expected to strongly influence the oxygen ion transport through this interface which plays an important role for the performance of solid oxide fuel cells. The structure of the interface is compared to the bare YSZ(100) surface structure near the microelectrode under identical conditions and to the structure of the YSZ(100) surface prepared under ultrahigh vacuum conditions.

17.
J Appl Crystallogr ; 48(Pt 4): 1324-1329, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26306093

ABSTRACT

BINoculars is a tool for data reduction and analysis of large sets of surface diffraction data that have been acquired with a two-dimensional X-ray detector. The intensity of each pixel of a two-dimensional detector is projected onto a three-dimensional grid in reciprocal-lattice coordinates using a binning algorithm. This allows for fast acquisition and processing of high-resolution data sets and results in a significant reduction of the size of the data set. The subsequent analysis then proceeds in reciprocal space. It has evolved from the specific needs of the ID03 beamline at the ESRF, but it has a modular design and can be easily adjusted and extended to work with data from other beamlines or from other measurement techniques. This paper covers the design and the underlying methods employed in this software package and explains how BINoculars can be used to improve the workflow of surface X-ray diffraction measurements and analysis.

18.
Langmuir ; 30(42): 12570-7, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25263250

ABSTRACT

Stable layers of crown ethers were grown on muscovite mica using the potassium-crown ether interaction. The multilayers were grown from solution and from the vapor phase and were analyzed with atomic force microscopy (AFM), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, and surface X-ray diffraction (SXRD). The results show that the first molecular layer of the three investigated dibenzo crown ethers is more rigid than the second because of the strong interaction of the first molecular layer with the potassium ions on the surface of muscovite mica. SXRD measurements revealed that for all of the investigated dibenzo crown ethers the first molecule lies relatively flat whereas the second lies more upright. The SXRD measurements further revealed that the molecules of the first layer of dibenzo-15-crown-5 are on top of a potassium atom, showing that the binding mechanism of this layer is indeed of the coordination complex form. The AFM and SXRD data are in good agreement, and the combination of these techniques is therefore a powerful way to determine the molecular orientation at surfaces.

19.
Phys Chem Chem Phys ; 14(14): 4796-801, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22361687

ABSTRACT

The structure and chemical composition of Pd nanoparticles exposed to pure CO and mixtures of CO and O(2) at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra high vacuum to 10 mbar and from room temperature to a few hundred degrees celsius. Our investigation shows that under CO exposure, above a certain temperature, carbon dissolves into the Pd particles forming a carbide phase. Upon exposure to CO and O(2) mixtures, the carbide phase forms and disappears reversibly, switching at the stoichiometric ratio for CO oxidation. This finding opens new scenarios for the understanding of catalytic oxidation of C-based molecules.

20.
J Endod ; 37(5): 684-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21496671

ABSTRACT

INTRODUCTION: The aim of this study was to determine in anterior teeth, bicuspids, and molars (1) the accuracy of 3 different electronic apex locators (EALs) in detecting the apical foramen and (2) the accuracy of digital radiography in determining the working length (WL), compared with visible control under a microscope. METHODS: By using radiovideography (RVG), we measured the lengths of 120 root canals with 3 different EALs (Endex, ProPex II, and Root ZX) and compared them with the actual lengths. The accuracy of EALs and RVG was related to each dental category. An endodontic training kit (Pro-Train) was used during experimental procedures. RESULTS: Statistical analysis showed that the 3 EALs and RVG were less accurate in anterior teeth and molars than in bicuspids. The paired-sample t test showed no statistically significant difference between mesiodistal plane and buccolingual plane digital radiography in all groups. CONCLUSIONS: The 3 EALs tested were more accurate in detecting the apical foramen in bicuspids than in both molars and anterior teeth. Radiographic measurements were not reliable for determining WL in all dental groups in both radiographic planes.


Subject(s)
Dental Pulp Cavity/anatomy & histology , Odontometry/instrumentation , Tooth Apex/anatomy & histology , Adult , Bicuspid/anatomy & histology , Cineradiography , Cuspid/anatomy & histology , Dental Pulp Cavity/diagnostic imaging , Electrical Equipment and Supplies/statistics & numerical data , Equipment Design , Humans , Incisor/anatomy & histology , Microscopy/statistics & numerical data , Middle Aged , Molar/anatomy & histology , Odontometry/statistics & numerical data , Radiography, Dental, Digital/statistics & numerical data , Root Canal Preparation/instrumentation , Tooth Apex/diagnostic imaging , Tooth Root/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...